

 1

A2X:	Agent-to-Everything		
A	Unified	Cloud-Native	Agent	Protocol	

Abstract	

Modern	 AI	 deployments	 increasingly	 involve	 intelligent	 agents	 that	 must	 use	 tools,	
exchange	data,	and	collaborate	with	other	agents	in	real	time.	Existing	standards	like	Model	
Context	 Protocol	 (MCP)	 and	 Agent-to-Agent	 (A2A)	 address	 pieces	 of	 this	 puzzle	 –	 MCP	
connects	 AI	 to	 external	 data/tools,	 and	 A2A	 links	 agents	 to	 each	 other	 –	 but	 each	 has	
limitations	 in	 isolation.	 This	 whitepaper	 presents	A2X	 (Agent-to-Everything),	 a	 unified	
communication	protocol	that	integrates	the	strengths	of	MCP	and	A2A	while	filling	critical	
gaps	 such	 as	 persistent	 memory,	 human	 oversight,	 multi-agent	 orchestration,	 and	
environment	 integration.	 We	 detail	 the	 A2X	 architecture’s	 core	 message	 primitives,	
session	 and	 security	 model,	 and	 extensibility	 mechanisms,	 and	 we	 illustrate	 how	 A2X	
enables	complex	workflows	that	were	previously	difficult	to	implement	safely	or	at	scale.	By	
standardizing	how	agents	communicate	with	everything	(tools,	other	agents,	people,	and	
IoT/physical	environments),	A2X	aims	to	provide	a	foundational	infrastructure	for	the	next	
generation	of	AI	systems.	Endnotes	are	provided	for	reference	to	relevant	prior	work	and	
emerging	standards.	

Introduction	and	Background	

Intelligent	software	agents	powered	by	AI	are	rapidly	gaining	adoption	in	domains	ranging	
from	digital	assistants	to	autonomous	business	processes.	To	function	effectively,	an	agent	
must	be	able	to	access	external	tools	and	data	as	well	as	coordinate	with	other	agents.	
Recognizing	 this,	 the	 AI	 community	 has	 introduced	 open	 protocols	 to	 standardize	 agent	
interactions.	Two	notable	developments	 in	 late	2024	and	2025	were	Anthropic’s	Model	
Context	Protocol	(MCP)	and	Google’s	Agent-to-Agent	(A2A):	

• Model	Context	Protocol	(MCP)	–	MCP	is	an	open	standard	(introduced	by	Anthropic	
in	Nov	2024)	for	connecting	AI	models	to	external	data	sources	and	tools.	It	provides	
a	 mechanism	 for	 an	 AI	 assistant	 (typically	 a	 large	 language	 model)	 to	 inject	
contextual	information	(files,	database	results,	etc.)	into	its	prompts	and	to	invoke	
tools	or	APIs	in	a	structured	way	during	a	session.	In	essence,	MCP	acts	like	a	“USB-
C	for	AI”	–	a	universal	port	through	which	an	AI	can	interface	with	various	resources.	
MCP	 sessions	 often	 use	 JSON-RPC	 over	 a	 persistent	 connection	 (e.g.	 server-sent	
events),	 allowing	 the	model	 to	 maintain	 stateful	 dialogs	 with	 a	 tool	 service.	 This	

A2X Whitepaper DataVesper LLC

enables	 richer	 interactions	 than	 one-off	 API	 calls:	 for	 example,	 an	 AI	 agent	 can	
retrieve	data,	get	follow-up	clarifications	from	the	tool,	and	so	forth,	all	in	one	session.	

• Agent-to-Agent	Protocol	 (A2A)	 –	A2A,	announced	by	Google	 in	April	2025,	 is	 an	
open	 protocol	 for	 interoperability	 between	 autonomous	 agents.	 It	 defines	
standard	message	formats	and	endpoints	(built	on	HTTP/HTTPS	+	JSON	and	Server-
Sent	Events)	so	that	agents	from	different	vendors	or	frameworks	can	discover	each	
other,	exchange	messages,	and	delegate	tasks.	In	practice,	A2A	treats	agents	as	web	
services	–	each	agent	exposes	an	API	(with	a	schema	called	an	“Agent	Card”	describing	
its	capabilities)	and	can	be	called	by	other	agents	via	HTTP	requests,	with	streaming	
responses	for	long-running	tasks.	Google	positions	A2A	as	complementary	to	MCP:	
where	MCP	connects	an	agent	to	tools	and	data,	A2A	connects	agents	to	other	agents	
to	enable	multi-agent	workflows.	For	example,	in	a	car	repair	scenario	one	could	use	
MCP	to	let	a	mechanic’s	AI	agent	execute	a	tool	action	like	lifting	a	car	on	a	hydraulic	
platform,	while	A2A	would	facilitate	a	conversation	between	the	customer’s	agent	and	
the	mechanic’s	agent	to	troubleshoot	the	issue	(e.g.	exchanging	messages:	“The	car	is	
making	a	rattling	noise”	→	“Send	me	a	picture	of	the	left	wheel”).	By	combining	these,	
an	agent	could	both	converse	with	a	peer	and	invoke	physical	actions	as	needed.	

Limitations	of	Current	Protocols:	While	MCP	and	A2A	each	address	important	aspects	of	
agent	 integration,	 using	 them	 in	 isolation	 (or	 even	 together)	 reveals	 significant	 gaps.	
Industry	 analyses	 warn	 of	 a	 potential	 “tug	 of	 war”	 if	 developers	 must	 juggle	 multiple	
disparate	 agent	 protocols,	 noting	 that	 teams	 have	 limited	 bandwidth	 to	 support	 many	
ecosystems	 simultaneously.	 Some	 of	 the	 key	 limitations	 and	 unmet	 needs	 are	 outlined	
below:	

• No	Long-Term	Memory	or	Cross-Session	State:	MCP	maintains	context	only	within	
a	 single	 session	 –	 once	 an	 interaction	 ends,	 the	 agent	 “forgets”	 everything	 unless	
manually	saved	externally.	User	preferences	or	 learned	 information	do	not	persist	
across	 independent	 sessions	 or	 applications.	 Likewise,	 A2A	 tasks	 are	 typically	
stateless	transactions;	the	protocol	itself	does	not	preserve	dialogue	history	or	agent	
state	beyond	each	task	request.	This	lack	of	built-in	memory	means	agents	cannot	
personalize	or	continuously	learn	over	time	without	custom	memory	solutions.	In	
real-world	use,	this	leads	to	repetitive	instructions	and	fragmented	user	experiences	
(each	new	session	starts	from	scratch).	

• Session	Boundaries	and	Context	Management:	Because	MCP	relies	on	sending	lots	
of	 context	 with	 each	 tool	 invocation,	 sessions	 can	 suffer	 from	 context	 bloat	 –	
conversation	history	and	data	accumulate	without	a	clear	mechanism	for	pruning	or	
summarization.	 There	 is	 no	 standard	way	 to	 delineate	what	 context	 is	 ephemeral	
versus	 what	 should	 persist;	 developers	 must	 manually	 manage	 when	 to	 reset	 or	
update	 the	 context	 to	 avoid	 stale	 information	 or	 overflow	 of	 the	model’s	 context	

A2X Whitepaper DataVesper LLC

window.	A2A,	being	stateless	per	request,	implicitly	avoids	long	context	buildup,	but	
at	the	cost	of	continuity	–	multi-turn	dialogues	have	to	be	re-established	or	encoded	
in	each	request.	Neither	protocol	provides	an	elegant	solution	for	maintaining	just	
the	right	amount	of	context	over	prolonged	interactions.	

• Tool	Integration	Overhead	and	Discovery:	MCP	requires	each	external	tool	or	API	
to	be	wrapped	behind	an	MCP-compatible	server	(essentially	an	adapter	exposing	a	
JSON-RPC	interface).	This	standardizes	access,	but	still	means	a	lot	of	manual	work	
to	 onboard	 new	 tools	 –	 every	 integration	 needs	 a	 custom	 connector.	 Agents	 only	
know	about	the	tools	that	have	been	explicitly	connected	by	developers;	there	is	no	
dynamic	discovery	 of	 new	 capabilities	 at	 runtime.	A2A	 similarly	 assumes	 agents	
know	each	other’s	 endpoints	or	are	 listed	 in	a	 registry;	 it	has	an	 “Agent	Card”	 for	
capability	 metadata,	 but	 no	 global	 lookup	 beyond	 what	 is	 configured	 by	 the	
developer.	In	short,	today’s	agents	operate	in	a	somewhat	static	tool	environment	–	
they	cannot	spontaneously	find	or	use	new	APIs	unless	those	are	pre-wrapped	or	
pre-registered.	This	hampers	adaptability	in	fast-changing	ecosystems.	

• Missing	Human	Oversight	Mechanism:	Neither	MCP	nor	A2A	defines	a	standard	
way	 for	 a	 human	 to	 be	 in	 the	 loop	 of	 an	 agent’s	 decisions.	 MCP	 focuses	 on	
agent↔tool	communication,	and	A2A	is	strictly	agent↔agent.	If	an	autonomous	agent	
needs	confirmation	or	clarification	from	a	human,	there	is	no	protocol-level	message	
for	that	–	developers	must	implement	ad-hoc	channels	(e.g.	a	GUI	prompt,	an	email)	
to	involve	humans.	Recent	commentary	has	pointed	out	that	this	lack	of	an	Agent-to-
Human	(A2H)	 interaction	model	is	a	“missing	link”	in	autonomous	AI	deployments.	
Without	a	standardized	oversight	loop,	it’s	difficult	to	ensure	safety	for	high-stakes	
tasks	 –	 e.g.	 preventing	 an	 AI	 from	 executing	 a	 sensitive	 action	 without	 human	
approval.	

• No	Standard	for	Environment	Integration	(Physical/IoT):	Agents	are	increasingly	
interfacing	not	just	with	software	APIs	but	with	physical	devices	and	environments	
(IoT	sensors,	robots,	simulators).	MCP	treats	such	interfaces	as	just	another	tool	API,	
lacking	 any	 specialized	 support	 for	 continuous	 sensor	 data	 streams	 or	 real-time	
control	 signals.	 A2A,	 being	 HTTP-based,	 isn’t	 optimized	 for	 low-latency	 local	
networks	or	streaming	sensor	updates.	There	is	currently	no	“Agent-to-Environment”	
(A2E)	 protocol	 for	 an	 agent	 to	 subscribe	 to	 environment	 events	 or	 safely	 control	
actuators.	This	is	a	gap	for	use	cases	like	robotics,	smart	infrastructure,	or	augmented	
reality,	where	an	agent	needs	a	persistent	bidirectional	link	with	its	environment	
(for	 telemetry,	 alerts,	 commands).	 Efforts	 like	 IBM’s	 Agent	 Communication	
Protocol	 (ACP)	 have	 arisen	 to	 explore	 on-premise	 or	 edge-focused	 agent	
communication,	underscoring	that	cloud-centric	standards	(MCP,	A2A)	alone	don’t	
cover	all	scenarios.	

• Multi-Agent	Coordination	and	Trust:	While	A2A	enables	basic	agent-to-agent	calls,	
it	 is	 limited	 to	 pairwise	 task	 delegation.	 There	 is	 no	 built-in	 framework	 for	

A2X Whitepaper DataVesper LLC

coordinating	multiple	agents	working	together	on	a	shared	goal	or	maintaining	a	
shared	 state.	 Orchestrating	 a	 team	 of	 agents	 (with	 roles	 like	 planner,	 executor,	
verifier)	 requires	 custom	 logic	 outside	 the	 protocol.	 Moreover,	 security	 and	
governance	in	multi-agent	settings	are	not	fully	solved	by	A2A’s	authentication	alone	
–	once	an	agent	accepts	a	task,	there’s	no	standard	way	to	enforce	scope	or	constraints	
on	 what	 it	 does	 with	 that	 task’s	 context.	Without	 a	 richer	 coordination	 protocol,	
scenarios	like	an	agent	chain-of-command	or	policy-limited	delegation	(e.g.	“Agent	A	
can	call	Agent	B	but	only	to	do	X	and	not	share	data	Y”)	are	hard	to	implement.	Early	
multi-agent	 experiments	have	noted	difficulties	 in	debugging	and	 controlling	 such	
systems.	 In	 short,	 current	 protocols	 lack	 the	 means	 to	 express	 multi-agent	
workflows,	group	dialogues,	or	fine-grained	trust	between	agents.	

• Adaptation	 and	 Continuous	 Learning:	 Modern	 AI	 agents	 could	 theoretically	
improve	 their	 performance	 over	 time	 by	 learning	 from	 interactions	 (feedback,	
mistakes,	new	information).	However,	neither	MCP	nor	A2A	provides	support	for	an	
agent	to	learn	on	the	fly.	Any	model	fine-tuning	or	knowledge	update	has	to	be	done	
out-of-band.	There’s	no	message	type	for	an	agent	to,	say,	update	its	knowledge	base	
or	incorporate	a	user	correction	persistently.	Similarly,	safety	oversight	 is	static	–	
once	 a	 prompt	 is	 sent,	 it’s	 up	 to	 the	 application	 to	 filter	 outputs	 or	 intervene.	No	
standard	mechanism	exists	for	an	automated	feedback	cycle	(like	an	agent	analyzing	
its	 own	 output	 or	 another	 agent	 critiquing	 it).	 This	 means	 opportunities	 for	 in-
context	learning	and	self-correction	are	missed.	Recent	research	by	Amazon	and	
others	suggests	that	agents	collaborating	and	critiquing	each	other	can	significantly	
enhance	 reasoning	accuracy,	 but	without	protocol	 support,	 such	patterns	must	be	
implemented	in	a	bespoke	manner.	

These	limitations	highlight	the	need	for	a	more	comprehensive	communication	layer	that	
spans	 all	 aspects	 of	 agent	 interaction.	 In	 fact,	multiple	 analysts	 have	 called	 for	 a	 unified	
approach	that	could	combine	the	functionalities	of	MCP,	A2A,	and	ACP	into	one	framework.	
In	the	next	section,	we	introduce	the	Agent-To-Everything	(A2X)	protocol	as	a	response	to	
these	 gaps,	 aiming	 to	 provide	 a	 single	minimal	 yet	 extensible	 standard	 that	 allows	 AI	
agents	to	seamlessly	communicate	with	everything	in	their	world.	

Introducing	the	A2X	Protocol	

A2X	 (Agent-to-Everything)	 is	 proposed	 as	 a	 unified,	 cloud-native	 standard	 that	 brings	
together	 the	 strengths	 of	MCP	 and	A2A	while	 overcoming	 their	 individual	 shortcomings.	
Instead	of	maintaining	separate	channels	for	agent-to-tool	vs.	agent-to-agent,	A2X	defines	a	
single	 cohesive	 interface	 through	which	 an	 agent	 can	 interact	with	any	 entity	 –	 be	 it	 a	
tool/service,	another	agent,	a	human	user,	or	an	environment.	The	design	philosophy	is	to	
simplify	 the	 ecosystem	 so	 that	 developers	 can	 build	 agent	 solutions	 on	 one	 foundation,	

A2X Whitepaper DataVesper LLC

“without	worrying	which	protocol	 is	doing	what,”	 and	avoid	 the	overhead	of	bridging	
multiple	protocols.	This	vision	aligns	with	expert	predictions	that	the	industry	would	benefit	
from	a	convergence	of	current	standards	into	one	umbrella	protocol.	DataVesper	LLC	leads	
the	development	of	A2X	as	an	open	specification	in	collaboration	with	the	AI	community,	
ensuring	that	it	remains	vendor-neutral	and	widely	adoptable.	

A2X	is	cloud-native	by	design	–	it	leverages	widely	adopted	web	technologies	for	transport	
and	 interoperability,	 rather	 than	 reinventing	 the	 wheel.	 Implementations	 may	 use	
HTTPS+JSON	 (like	 a	 typical	 web	 API)	 or	 persistent	WebSocket	 connections	 for	 realtime	
communication,	 and	 integrate	 with	 cloud	 identity	 services	 for	 authentication.	 However,	
A2X’s	protocol	semantics	are	transport-agnostic	–	the	same	message	types	could	be	carried	
over	alternative	channels	(e.g.	a	high-speed	local	bus	or	IoT	protocol)	if	needed,	as	long	as	
both	 sides	understand	 the	 format.	The	goal	 is	 to	make	A2X	easily	deployable	on	modern	
infrastructure	 (Kubernetes,	 serverless,	 etc.)	 while	 also	 adaptable	 to	 on-premise	 or	 edge	
environments	(where	lightweight	or	offline	operation	is	required).	

Design	Principles	and	Architecture	

At	 its	 core,	 A2X	 defines	 a	 small	 set	 of	unified	message	 primitives	 and	 a	 session-based	
communication	model	that	together	support	all	major	interaction	patterns.	The	protocol	is	
designed	with	extensibility	and	security	in	mind,	so	it	can	scale	from	simple	use	cases	(single	
agent	 using	 one	 tool)	 to	 complex	 ones	 (dozens	 of	 agents	 collaborating	 across	 cloud	 and	
edge).	Key	features	and	innovations	in	A2X	are	summarized	below:	

• Unified	 Minimal	 Primitives:	 Rather	 than	 having	 one	 protocol	 for	 “tools”	 and	
another	for	“agents,”	A2X	uses	a	single	message-passing	model	for	every	interaction.	
It	 defines	 a	 few	 fundamental	 message	 types	 that	 cover	 the	 spectrum	 of	 agent	
communication.	These	core	types	include:	

o Message	–	a	general-purpose	communication	or	prompt	 from	one	entity	 to	
another.	This	could	represent	a	user	query	to	an	agent,	an	agent’s	reply,	or	an	
agent-to-agent	 question/request.	 It	 is	 essentially	 an	 open-ended	 dialog	
message,	supporting	multi-turn	conversations	in	a	continuous	flow	(unlike	
HTTP	request/response	which	closes	after	one	exchange).	

o Action	–	a	request	to	perform	an	operation	or	invoke	a	capability.	This	covers	
what	MCP	calls	a	 tool/function	call	or	what	A2A	calls	a	 task	delegation.	An	
Action	message	carries	a	structured	description	of	the	operation	(e.g.	“execute	
function	X	with	parameters	Y”	or	“control	device	Z	with	setting	W”).	 It	may	
target	a	tool	service	or	another	agent	that	can	perform	the	action.	

o Observation	 –	a	 conveyance	of	 sensor	data,	 events,	or	 incremental	 results.	
This	allows	agents	to	receive	streaming	information	from	their	environment	

A2X Whitepaper DataVesper LLC

or	tools.	For	example,	an	IoT	sensor	agent	might	send	periodic	Observation	
messages	with	 temperature	 readings,	or	an	AI	 service	might	 stream	partial	
results	 (tokens	 or	 progress	 updates)	 as	 an	 Observation	 sequence.	
Observations	 enable	 real-time,	 asynchronous	 data	 flow	 into	 the	 agent’s	
context.	

o Feedback	–	a	structured	response	providing	evaluation	or	guidance	on	some	
other	message	or	 action.	 This	 is	 used	 for	 oversight	 and	 learning	 loops.	 For	
instance,	 a	 human	 operator’s	 approval	 or	 disapproval	 of	 an	 agent’s	 Action	
would	be	 sent	 as	 a	Feedback	message,	or	 an	automated	policy	agent	might	
send	a	Feedback	indicating	that	an	output	violates	a	rule.	Feedback	messages	
let	 the	 protocol	 carry	 meta-communication	 about	 the	 agent’s	 behavior,	
enabling	self-correction	and	human-in-the-loop	control.	

All	A2X	messages	share	a	common	envelope	with	fields	such	as	a	unique	message	ID,	
timestamp,	sender	and	recipient	IDs,	message	type	(one	of	the	above),	an	optional	
reference	 to	 a	 context	 or	 session,	 and	 a	 payload.	 The	 payload	 can	 be	 JSON	 (for	
readability)	 or	 a	more	 efficient	 binary	 encoding,	 and	 its	 schema	varies	 slightly	 by	
message	type.	These	few	primitives,	in	combination	with	the	session	mechanism,	are	
powerful	enough	to	express	complex	workflows	–	yet	keeping	the	set	small	makes	the	
protocol	easier	to	implement	and	extend.	(Notably,	the	design	of	these	message	types	
draws	on	concepts	from	existing	standards:	for	example,	Actions	generalize	JSON-RPC	
function	calls,	Feedback	is	inspired	by	human	approval	flows	in	AI	safety	literature,	and	
Observations	align	with	streaming	update	patterns	like	SSE	or	MQTT	topics.	By	unifying	
them,	A2X	avoids	needing	separate	subsystems	for	each	context.)	

• Persistent	 Sessions	 &	 Channels:	 A2X	 is	 inherently	 session-oriented.	 When	 an	
agent	(or	any	client,	human	or	machine)	connects	via	A2X,	it	establishes	a	persistent	
channel	that	can	host	a	continuous	exchange	of	messages	in	both	directions,	without	
reopening	new	connections	for	each	request.	In	practical	terms,	this	behaves	like	a	
long-lived	 conversation	 socket	 –	 conceptually	 similar	 to	 a	WebSocket,	 though	 the	
protocol	 does	 not	 mandate	 using	 the	 WebSocket	 transport.	 Once	 a	 session	 is	
established	 and	 authenticated,	 any	 number	 of	 Message,	 Action,	 Observation,	 or	
Feedback	events	can	flow	back	and	forth	as	needed.	This	design	enables	long-lived	
dialogues	and	interactions	that	span	time	and	maintain	state.	For	example,	an	agent	
and	 a	 user	might	 keep	 a	 session	 open	 all	 day,	 so	 the	 agent	 can	 proactively	 send	
updates	or	ask	questions	contextually,	rather	than	the	user	always	initiating	requests.	
Sessions	support	continuity:	participants	can	reference	earlier	messages	by	ID,	build	
on	 shared	 context,	 and	 avoid	 the	 overhead	 of	 re-authenticating	 or	 re-negotiating	
parameters	each	time.	Importantly,	sessions	are	not	strictly	bound	to	a	single	physical	
connection	–	an	implementation	could	allow	sessions	to	hibernate	and	resume	(with	

A2X Whitepaper DataVesper LLC

the	same	context)	to	handle	client	reconnects	or	load	balancing,	providing	scalability	
while	preserving	state.	A2X	sessions	thus	combine	the	statefulness	of	MCP	(context	
maintained	 across	 turns)	 with	 the	 scalability	 of	 stateless	 services	 (the	
infrastructure	can	manage	idle	sessions	efficiently).	They	also	naturally	enable	real-
time	push:	 e.g.	 an	 agent	 can	 send	an	Observation	or	Feedback	 spontaneously	 to	 a	
client	it’s	conversing	with,	without	waiting	for	a	prompt.	

• Cloud-First	Identity	and	Security:	From	the	ground	up,	A2X	incorporates	a	robust	
identity	 and	 permission	model	 to	 ensure	 secure	 operation	 in	 open	 environments.	
Every	participant	in	the	network	–	whether	it’s	an	agent,	a	tool	service,	a	user	client,	
etc.	–	has	a	unique	 identifier	 (like	a	URI	or	GUID)	and	uses	strong	authentication	
(such	 as	 OAuth	 tokens,	 API	 keys,	 or	mutual	 TLS	 keys)	 when	 establishing	 an	 A2X	
session.	 The	 protocol	 supports	 exchanging	 identity	 information	 and	 validating	
credentials	 as	part	of	 the	 session	handshake.	Once	 connected,	messages	 can	 carry	
auth	 context	or	 capability	 tokens	 so	 that	delegation	 is	 secure	and	 controlled.	 For	
example,	if	Agent	A	invokes	an	Action	on	Agent	B	that	involves	accessing	a	database,	
Agent	A’s	message	can	include	a	scoped	token	granting	B	read-only	access	for	that	
specific	task	–	B	will	execute	the	action	using	that	token,	and	the	receiving	database	
service	 will	 verify	 it.	 In	 this	 way,	 A2X	 enables	 secure	 task	 delegation	 without	
requiring	blind	trust	between	agents.	Every	message’s	source	is	authenticated,	and	
fine-grained	access	control	can	be	enforced	at	the	message	level.	The	protocol	also	
supports	 end-to-end	encryption	of	message	payloads	when	needed	 (ensuring	 that	
intermediaries	or	brokers	cannot	 snoop	on	sensitive	data	 in	 transit).	By	baking	 in	
modern	 security	 practices	 (enterprise-grade	 auth	 schemes,	 encryption,	 auditing	
hooks),	 A2X	 aims	 to	 be	 “secure	 by	 default”	 –	 addressing	 concerns	 that	 earlier	
protocols	 left	 to	 the	 application	 layer.	 This	 is	 critical	 in	 enterprise	 settings	where	
agents	might	carry	out	high-impact	operations;	with	A2X,	organizations	can	trust	that	
only	authorized	agents	perform	actions	and	that	 there	 is	an	audit	 trail	of	all	agent	
communications.	

• Capability	 Advertisement	 and	 Discovery:	 A2X	 tackles	 the	 problem	 of	 dynamic	
discovery	 by	 allowing	 agents	 and	 services	 to	 publish	 descriptions	 of	 their	
capabilities	in	a	standardized	format.	Upon	joining	an	A2X	network	(or	at	any	time	
during	a	session),	an	agent	can	broadcast	a	self-descriptive	Capability	Descriptor	–	
analogous	to	A2A’s	Agent	Card	but	more	general.	This	descriptor	(expressed	in	JSON)	
lists	what	actions	the	agent	can	perform	or	what	services	it	provides,	along	with	any	
required	parameters,	authentication	info,	and	other	metadata	(e.g.	cost	of	using	an	
API,	rate	limits,	etc.).	Other	agents	can	consume	these	descriptors	to	learn	what	tools	
or	functions	are	available	in	the	ecosystem.	In	practice,	this	could	be	facilitated	by	
a	directory	service:	for	example,	in	a	cloud	deployment,	there	might	be	a	well-known	
registry	that	agents	query	to	find	others	that	match	certain	capabilities	(e.g.	“data-
analysis”	or	“email-sending”).	A2X	defines	messages	for	querying	and	publishing	such	

A2X Whitepaper DataVesper LLC

directories,	 though	 a	 directory	 could	 also	 be	 implemented	 as	 an	 A2X	 agent	 itself	
(responding	 to	 capability	 queries).	 The	 net	 effect	 is	 that	 agents	 can	 perform	
something	akin	to	service	discovery	–	much	like	microservices	find	each	other.	If	a	
new	tool	comes	online	(say	a	new	weather	API),	it	can	announce	itself	via	A2X	and	
immediately	 any	 authorized	 agent	 could	 start	 using	 it,	 even	 at	 runtime,	 without	
custom	integration	code.	This	is	a	leap	from	MCP’s	model	where	an	agent	only	knows	
pre-integrated	tools.	In	A2X,	the	ecosystem	is	more	open	and	self-configuring.	Tools	
and	agents	advertise	what	they	can	do;	agents	can	also	request	“Who	can	do	X?”	and	
get	a	list	of	candidates	to	call.	This	capability	discovery	is	critical	for	building	flexible	
systems	where	the	toolchain	can	evolve	over	time	without	breaking	the	agent.	(For	
example,	an	organization	could	add	a	new	internal	service	and	all	 its	A2X-enabled	
agents	would	know	about	it	and	how	to	call	it,	as	long	as	permissions	are	in	place.)	By	
reducing	the	need	for	hardcoded	integrations,	A2X	moves	closer	to	autonomous	tool	
use	–	agents	that	can	truly	adapt	to	new	resources	on	the	fly.	

• Explicit	Context	and	Memory	Artifacts:	To	address	the	memory	and	context	issues,	
A2X	introduces	the	concept	of	Context	Artifacts	–	persistent,	sharable	state	objects	
that	can	be	attached	to	sessions	or	passed	between	agents.	Instead	of	relying	purely	
on	the	AI	model’s	 internal	memory,	A2X	makes	context	a	first-class	element	of	the	
protocol.	For	example,	when	a	user	starts	a	session	with	an	agent,	there	might	be	a	
Context	Artifact	representing	that	user’s	profile	and	preferences,	which	the	agent	can	
load	at	session	start.	This	artifact	could	be	stored	in	a	cloud	database	or	memory	store	
and	referenced	by	an	ID.	Throughout	the	session,	as	new	information	is	gathered	or	
decisions	 made,	 the	 agent	 (or	 other	 agents)	 can	 update	 the	 artifact	 via	 special	
messages	or	include	it	 in	subsequent	interactions.	This	explicit	external	memory	
approach	 has	 several	 benefits:	 it	 provides	 continuity	 across	 sessions	 (since	 the	
context	artifact	can	be	saved	and	reloaded	later),	it	delineates	what	is	persistent	vs.	
transient	 (developers	 can	 clearly	 separate	 long-term	 knowledge	 from	 short-term	
context),	and	it	allows	collaborative	updating	(multiple	agents	can	contribute	to	or	
consult	the	same	context	artifact	if	appropriate	permissions	are	given).	For	instance,	
if	one	agent	learns	a	new	fact	or	the	outcome	of	a	task,	it	could	emit	an	Observation	
that	updates	a	shared	“knowledge	base”	artifact.	Another	agent	coming	in	later	could	
read	from	that	artifact	to	leverage	that	knowledge.	By	managing	context	in	the	open,	
A2X	avoids	the	“hidden	state”	problem	of	LLM	sessions	–	everything	important	can	
be	captured	in	artifacts	that	are	versioned	and	auditable.	Of	course,	privacy	controls	
apply:	sensitive	user	data	in	an	artifact	can	be	access-controlled	so	only	certain	agents	
or	 roles	 can	 retrieve	 it.	Overall,	 context	 artifacts	 give	 a	 structured	way	 to	 achieve	
persistent	 user	 intent	 and	 cross-session	 memory,	 solving	 the	 MCP	 limitation	
where	each	app	had	siloed	context.	In	A2X,	an	agent	that	interacts	with	a	user	over	
months	can	maintain	a	evolving	profile	of	that	user	(likes,	goals,	interaction	history)	

A2X Whitepaper DataVesper LLC

that	travels	with	the	user	–	any	new	A2X	agent	the	user	interacts	with	could	(with	
consent)	load	that	profile	and	instantly	personalize	its	behavior.	

• Human-in-the-Loop	 Oversight	 and	 Feedback:	 A	 hallmark	 of	 A2X	 is	 its	 built-in	
support	for	Agent↔Human	collaboration.	Humans	are	treated	as	just	another	type	
of	participant	(with	appropriate	privileges)	on	the	A2X	network,	which	means	there	
is	a	standard	way	for	agents	to	request	human	input	or	approval	and	for	humans	to	
provide	 feedback.	 The	protocol	 accomplishes	 this	 through	 the	Feedback	message	
type	and	an	approval	workflow.	For	example,	suppose	an	agent	wants	to	perform	
an	 action	 that	 is	 sensitive	 (sending	 an	 email	 to	 a	 company-wide	 list).	 The	 agent’s	
Action	message	can	be	marked	as	“approval	required”	and	specify	a	human	(or	group)	
as	the	approver.	The	recipient	(e.g.	an	email-sending	service	agent)	will	then	pause	
that	 action	 and	 generate	 an	Approval	 Request	 (essentially	 a	 specialized	 Feedback	
query)	to	the	designated	human’s	client.	The	human,	perhaps	using	a	dashboard	or	
mobile	app	connected	via	A2X,	receives	the	request	with	details	of	the	action	(and	
perhaps	the	agent’s	justification	or	confidence	level).	The	human	can	then	respond	
with	a	Feedback	message:	Approved,	Rejected,	or	Approved	with	modifications,	 etc.,	
possibly	with	comments.	The	agent	receives	this	feedback	and	proceeds	accordingly	
(or	aborts	the	action	on	rejection).	All	of	this	occurs	through	standardized	message	
exchanges,	 meaning	 developers	 don’t	 have	 to	 custom-build	 a	 human	 override	
mechanism	–	it’s	part	of	the	protocol.	This	greatly	enhances	safety	and	trust,	as	high-
impact	 AI	 decisions	 can	 be	 gated	 behind	 human	 judgment	 when	 appropriate.	 In	
addition,	humans	can	inject	 feedback	proactively:	at	any	time,	a	human	supervisor	
could	send	a	“Feedback:	adjust	strategy”	or	“halt”	message	into	an	agent’s	session	if	
they	see	it	going	awry,	and	the	agent	is	expected	to	handle	that	gracefully.	Because	
A2X	treats	human	inputs	similarly	to	agent	messages,	it	is	easy	to	log	and	audit	them	
alongside	 everything	 else,	 providing	 transparency.	 Ultimately,	 A2X	 makes	 it	
straightforward	 to	 implement	 Human-in-the-Loop	 AI.	 As	 an	 example	 of	 the	
importance:	we	wouldn’t	want	an	autonomous	agent	to	transfer	large	funds	or	delete	
critical	data	without	a	human	check	–	and	indeed	prior	work	emphasizes	making	such	
“human	 confirmation”	 a	 standard	 part	 of	 agent	 workflows.	 By	 supporting	
asynchronous	 approval	 (the	 agent	 can	 continue	 other	 work	 while	 waiting)	 and	
subscriptions	 for	 oversight,	 A2X	 ensures	 that	 using	 humans	 as	 safety	 nets	 or	
collaborators	does	not	break	 the	 flow	of	automation.	This	approach	addresses	 the	
oversight	 gap	 identified	 in	 current	 protocols,	 making	 agents	 more	 reliable	 and	
controllable	in	production.	

• Multi-Agent	 Coordination	 and	 Composability:	 A2X	 natively	 facilitates	 more	
complex	multi-agent	structures	beyond	one-to-one	conversations.	Any	A2X	message	
can	have	multiple	 recipients	 (allowing	 one	 agent	 to	 broadcast	 an	update	 to	many	
peers),	and	the	protocol	supports	tagging	messages	with	a	coordination	context	or	
conversation	group	ID.	This	means	agents	can	effectively	form	teams	or	sub-networks	

A2X Whitepaper DataVesper LLC

for	a	particular	project	or	goal.	For	example,	if	several	agents	need	to	collaborate	on	
a	 workflow	 (say	 a	 “planner”	 agent,	 a	 “worker”	 agent,	 and	 a	 “reviewer”	 agent	 all	
working	on	a	complex	task),	an	orchestrator	could	assign	them	a	shared	context	ID.	
Thereafter,	 any	 messages	 labeled	 with	 that	 ID	 are	 understood	 to	 pertain	 to	 that	
project,	and	all	agents	in	the	group	will	receive	relevant	broadcasts.	An	agent	can	still	
send	direct	messages	or	actions	to	a	single	target	within	the	group,	but	the	common	
context	allows	state	sharing:	e.g.	a	shared	artifact	for	the	project’s	status	or	a	log	of	
contributions.	 This	 lightweight	 mechanism	 acts	 like	 a	 virtual	 meeting	 room	 for	
agents.	By	simply	including	a	context	identifier,	agents	know	which	conversation	or	
multi-agent	session	a	message	belongs	to,	avoiding	confusion	when	multiple	tasks	are	
ongoing.	Moreover,	multi-recipient	messages	let	an	agent	efficiently	notify	a	whole	
set	of	agents	at	once	(e.g.	“All	sensors,	report	your	status	now”	as	a	single	broadcast).	
Security	rules	can	be	applied	to	contexts	(only	agents	with	certain	roles	can	 join	a	
given	 context),	 providing	 controlled	 collaboration.	 The	 end	 result	 is	 that	
orchestrating	a	multi-agent	system	becomes	simpler	–	the	protocol	itself	provides	the	
glue	for	coordination,	rather	than	needing	a	separate	orchestration	engine	to	route	
messages.	 This	 design	 addresses	 scenarios	 that	 A2A	 left	 open,	 like	 multi-step	
workflows	with	several	agents	contributing	in	parallel	or	in	sequence.	A2X	makes	
it	possible	to	implement	patterns	such	as	agent	collectives	voting	on	a	solution,	or	a	
master	agent	dynamically	recruiting	helper	agents	for	subtasks,	all	using	consistent	
message	 semantics.	 In	 essence,	 it	 elevates	 multi-agent	 interactions	 to	 first-class	
status,	fulfilling	the	promise	of	agents	that	can	seamlessly	“team	up”	when	needed.	

• Support	 for	 In-Context	 Learning	 and	 Adaptation:	 While	 A2X	 is	 primarily	 a	
communication	protocol	and	not	a	learning	algorithm,	it	is	built	to	enable	continuous	
learning	 loops	 by	 carrying	 the	 right	 information.	 The	 inclusion	 of	 the	 Feedback	
primitive	 is	 one	 example	 –	 it	 allows	 an	 agent	 to	 receive	 explicit	 critiques	 or	
evaluations	from	humans	or	other	agents	about	its	outputs.	For	instance,	one	could	
deploy	 a	 secondary	 “audit	 agent”	whose	 sole	 job	 is	 to	 review	 the	 primary	 agent’s	
decisions	 and	 send	 Feedback	 if	 something	 looks	 off.	 The	 primary	 agent	 can	 then	
incorporate	that	feedback	(perhaps	by	adjusting	its	behavior	or	querying	for	more	
info)	 before	 finalizing	 an	 action.	 Over	 time,	 such	 feedback	 could	 be	 logged	 in	 the	
agent’s	 context	 artifact	 (“lessons	 learned”)	 and	 even	 used	 to	 update	 the	 model’s	
knowledge	via	fine-tuning	triggers.	A2X	does	not	directly	fine-tune	models,	but	it	can	
integrate	with	training	pipelines:	e.g.	an	Action	message	for	model	update	could	be	
sent	 to	 a	 training	 service	 agent	 with	 new	 examples,	 enabling	 on-the-fly	 model	
improvement	 in	 a	 controlled	way.	Additionally,	 A2X’s	 flexible	messaging	 supports	
strategies	like	chain-of-thought	prompting	and	self-reflection.	Agents	can	share	their	
intermediate	reasoning	steps	as	messages	(which	could	be	saved	for	transparency	or	
analyzed	 by	 a	 referee	 agent).	 They	 can	 also	 request	 information	 from	 knowledge	
bases	mid-task	and	inject	that	into	context.	In	summary,	A2X	is	conducive	to	agents	

A2X Whitepaper DataVesper LLC

that	learn	and	adapt	within	their	sessions,	because	it	standardizes	the	exchange	of	
feedback	 and	 new	 data.	 This	 is	 in	 line	 with	 emerging	 approaches	 to	 boost	 AI	
robustness	 by	 having	 agents	 critique	 or	 assist	 each	 other.	 By	 making	 those	
interactions	 part	 of	 the	 normal	 workflow	 (rather	 than	 hacks	 on	 top	 of	 a	 chat	
interface),	A2X	can	help	agents	improve	themselves	safely	under	oversight.	Over	the	
long	term,	this	could	lead	to	ecosystems	of	agents	that	not	only	work	together	but	also	
teach	each	other	and	update	shared	knowledge	in	a	virtuous	cycle.	

With	 these	 design	 elements,	 A2X	 aims	 to	 serve	 as	 a	 universal	 “agent	 communication	
layer”	–	akin	to	how	TCP/IP	serves	as	a	universal	networking	layer.	It	remains	minimal	in	
concept	(just	a	handful	of	message	types	and	simple	session	semantics),	but	it	is	powerful	in	
what	it	can	express,	due	to	the	flexibility	of	those	messages	and	the	inclusion	of	mechanisms	
for	discovery,	context-sharing,	and	feedback.	We	next	illustrate	a	concrete	example	of	how	
A2X	can	be	used	in	practice,	to	make	the	above	concepts	more	tangible.	

Illustrative	Workflow	Example	

To	 demonstrate	 A2X	 in	 action,	 consider	 a	 scenario	 of	 a	 “Smart	 Office	 Assistant”	 agent	
deployed	in	a	corporate	environment.	This	agent’s	job	is	to	manage	meeting	rooms	and	IT	
tasks,	in	cooperation	with	human	managers	and	several	specialized	sub-agents.	Below,	we	
step	through	how	such	a	scenario	plays	out	with	A2X,	highlighting	the	protocol’s	features:	

1. Initialization	 and	 Discovery:	 Upon	 startup,	 the	 Smart	 Office	 Assistant	 agent	
connects	to	the	company’s	A2X	broker	(or	cloud	endpoint)	and	authenticates	using	
its	credentials.	It	then	registers	its	capabilities	–	for	example,	it	publishes	that	it	can	
handle	scheduling	requests,	control	IoT	devices	(lights,	HVAC),	send	emails,	etc.	–	by	
sending	 a	 Capability	 Descriptor	 into	 the	 network.	 The	 assistant	 also	 queries	 the	
directory	service	(via	A2X)	to	discover	what	other	agents	or	services	are	available.	It	
finds,	for	instance,	an	“Email	Agent”	(for	sending	emails),	a	“Network	Monitor	Agent”	
(oversees	 network	 health),	 and	 an	 “HVAC	 Control	 Service”	 (manages	 building	
climate).	Each	of	these	has	advertised	its	own	capabilities	(the	email	agent	can	send	
or	draft	emails	given	content,	the	HVAC	service	can	adjust	temperatures	and	report	
sensor	 data,	 etc.).	 Now	 the	 Smart	 Assistant	 knows	 about	 these	 potential	
collaborators	and	tools,	without	any	hardcoding	–	the	discovery	happened	through	
A2X’s	dynamic	registration.	

2. Persistent	Human-Agent	Session:	A	human	manager	uses	 a	dashboard	 interface	
(connected	as	a	human	client	via	A2X)	to	engage	the	Smart	Assistant.	They	initiate	a	
session	with	the	agent	–	essentially	opening	a	continuous	dialog	channel.	Because	of	
the	prior	authentication,	the	agent	recognizes	the	manager’s	user	ID	and	immediately	
loads	 the	 manager’s	 context	 artifact	 (say,	 their	 preferences	 and	 a	 summary	 of	

A2X Whitepaper DataVesper LLC

current	office	issues).	This	means	the	agent	is	instantly	aware	of	the	user’s	relevant	
history	(e.g.	that	the	manager	likes	brief	updates	and	that	Room	5A	had	a	projector	
issue	yesterday).	The	session	is	now	set	up	for	a	rich	interaction:	the	manager	and	
agent	can	exchange	messages	freely,	and	the	agent	can	also	send	observations	or	ask	
questions	proactively	during	the	session	as	things	evolve.	

3. Dialogue	and	Contextual	Queries:	The	manager	types	a	request:	“Please	ensure	all	
meeting	rooms	are	set	up	for	today’s	meetings	and	send	a	summary	update	to	the	team.”	
This	comes	into	the	Smart	Assistant	as	a	Message	(from	User	to	Agent,	containing	the	
request	 text).	 Because	 the	 session	 is	 continuous,	 the	 agent	 can	 think	 through	 the	
request	and	even	ask	clarifying	questions	 if	needed	without	 losing	context.	 In	 this	
case,	the	assistant	sends	back	a	Message:	“Sure.	Do	you	want	me	to	also	check	network	
connectivity	 and	 room	 temperature	 in	 those	 rooms?”	 –	 seeking	 confirmation	 on	
whether	 to	 include	 IT/comfort	 checks.	 The	manager	 replies	 “Yes,	 good	 idea.”	 This	
brief	 back-and-forth	 illustrates	 how	 A2X	 supports	 a	 multi-turn	 conversation	
between	user	and	agent,	more	naturally	than	a	one-shot	API	call.	

4. Invoking	Sub-Agents	and	Tools	 (Actions):	Now	the	Smart	Assistant	proceeds	 to	
carry	 out	 the	 manager’s	 request.	 It	 needs	 to	 make	 sure	 each	 meeting	 room’s	
equipment	is	set	up,	the	network	is	fine,	and	the	climate	is	comfortable,	then	compile	
a	summary.	The	assistant	uses	Action	messages	to	delegate	tasks:	it	sends	an	Action	
to	the	HVAC	Control	agent	–	e.g.,	“Optimize	climate	in	Rooms	A,	B,	C	by	9:00	AM”	with	
target	 temperatures.	 It	 also	 sends	 an	 Action	 to	 the	 Network	Monitor	 agent:	 “Run	
diagnostics	 on	Wi-Fi	 and	 projector	 connectivity	 in	 Rooms	 A,	 B,	 C.”	 Both	 of	 these	
actions	are	tagged	with	a	coordination	context	ID	like	MeetingPrep:2025-06-17	so	that	
results	 can	 be	 correlated.	 The	 HVAC	 and	 Network	 agents,	 upon	 receiving	 these	
Actions,	 begin	 their	 work	 (adjusting	 thermostats,	 running	 network	 pings,	 etc.).	
Notably,	these	interactions	are	all	happening	in	parallel	and	asynchronously,	thanks	
to	 A2X’s	 ability	 to	 handle	 multiple	 concurrent	 messages	 and	 tasks.	 The	 Smart	
Assistant	doesn’t	pause	everything	to	wait	–	it	can	continue	with	other	steps	or	handle	
additional	input	while	those	sub-tasks	execute.	

5. Streaming	Observations:	As	 the	HVAC	and	Network	agents	carry	out	 their	 tasks,	
they	send	back	Observation	messages	to	update	the	Smart	Assistant	on	progress.	For	
example,	the	HVAC	service	streams	observations	like	“Room	A	temperature	now	22°C	
(target	21°C)”,	 “Room	B	AC	 turned	on,	 cooling…”,	 etc.	The	Network	Monitor	agent	
streams	 results	 like	 “Room	B	 projector	 connectivity	 =	OK,	Wi-Fi	 latency	 =	 120ms	
(higher	than	normal)”.	These	Observation	messages	arrive	in	the	Smart	Assistant’s	
session	 asynchronously	 as	 soon	 as	 they	 are	 available.	 Because	 A2X	 supports	
streaming,	 the	 assistant	 can	 aggregate	 data	 in	 real-time	 and	 react	 promptly	 if	
something	is	amiss	(rather	than	waiting	for	a	final	report).	In	our	scenario,	suppose	
the	network	agent	reports	that	Room	B’s	Wi-Fi	 latency	is	high.	The	Smart	Assistant	
recognizes	this	as	a	potential	problem.	

A2X Whitepaper DataVesper LLC

6. Multi-Agent	Coordination:	Upon	noticing	the	network	issue	in	Room	B,	the	Smart	
Assistant	 decides	 to	 involve	 another	 agent	 –	 say	 an	 IT	 Support	 Agent	 that	 can	
troubleshoot	 network	 problems.	 Using	 the	 same	 coordination	 context	
(MeetingPrep:2025-06-17),	the	assistant	sends	a	Message	to	the	IT	Support	agent:	“We	
have	high	network	latency	in	Room	B’s	access	point.	Please	investigate	and	resolve	if	
possible.”	This	is	a	direct	agent-to-agent	communication,	enabled	by	the	fact	that	all	
these	agents	speak	A2X.	The	IT	Support	agent	joins	the	context	and	replies	(Message):	
“Acknowledged,	checking	the	router	now.”	It	may	then	itself	send	further	Actions	to	
network	diagnostic	tools	or	to	reboot	hardware.	Throughout,	because	the	context	ID	
is	 shared,	all	 relevant	agents	 (Smart	Assistant,	Network	Monitor,	 IT	Support)	
remain	on	the	same	page	about	what	issue	is	being	discussed	and	can	see	each	other’s	
messages	as	needed.	They	effectively	form	a	temporary	team	to	handle	this	sub-task,	
coordinated	 via	 A2X	 messaging.	 In	 a	 few	 minutes,	 the	 IT	 Support	 agent	 fixes	 a	
configuration	and	sends	a	Message:	“Latency	issue	resolved	–	network	back	to	normal	
in	Room	B.”	

7. Human	Approval	Loop:	Meanwhile,	the	Smart	Assistant	has	compiled	a	summary	of	
all	meeting	rooms	and	drafted	an	email	to	send	to	the	team	as	requested.	The	email	
content	includes	the	status	of	equipment,	network,	and	climate	for	each	room.	Before	
sending	 this	 out	 via	 the	 Email	 Agent,	 the	 assistant	 knows	 that	 company	 policy	
requires	manager	approval	 for	mass	emails	 to	 the	whole	 team.	 So	 it	 composes	an	
Action	to	the	Email	Agent:	“Send	this	summary	email	to	All-Staff	list”	with	the	email	
draft	attached,	and	it	flags	this	Action	as	requiring	approval	from	the	Manager.	Upon	
receiving	 the	Action,	 the	Email	Agent	 recognizes	 the	 flag	 and	pauses	 –	 instead	 of	
immediately	sending,	it	creates	an	Approval	Request	(a	Feedback	message)	to	the	
manager’s	client.	The	manager	gets	a	notification	via	the	dashboard:	“Agent	requests	
approval	to	send	email:	[preview	of	email].	Approve	or	Reject?”	The	manager	reviews	
the	summary	email	(which	the	agent	helpfully	prepared)	and	clicks	“Approve.”	This	
sends	 a	 Feedback	message	 back	 to	 the	 Email	 Agent	 (and/or	 the	 Smart	 Assistant)	
indicating	approval.	The	Email	Agent	now	proceeds	to	send	out	the	email	to	the	team	
and	 confirms	 the	 Action	 completion.	 This	 whole	 sequence	 was	 handled	 by	 A2X’s	
human-in-loop	mechanism;	the	Smart	Assistant	did	not	have	to	implement	a	custom	
UI	dialog	or	wait	 idly	–	the	protocol	took	care	of	routing	the	request	and	response	
asynchronously.	 The	manager’s	decision	was	 logged	 as	 part	 of	 the	A2X	message	
trace	for	future	auditing,	satisfying	compliance	requirements.	

8. Safety	Feedback	and	Adjustment:	Let’s	introduce	one	more	element:	suppose	the	
organization	has	a	Policy	Checker	agent	that	reviews	communications	for	sensitive	
information.	This	agent	 is	subscribed	to	outgoing	emails	 in	 the	environment	(with	
read-only	rights)	and	it	sees	the	draft	of	the	summary	email.	It	notices	that	the	Smart	
Assistant’s	draft	 included	an	internal	ticket	number	or	an	overly	detailed	technical	
note	 that	 might	 confuse	 recipients.	 The	 Policy	 agent	 sends	 a	 Feedback	 message	

A2X Whitepaper DataVesper LLC

(targeted	 to	 the	 Smart	 Assistant,	 referencing	 the	 email	 draft	 message	 ID):	
“Suggestion:	remove	internal	ticket	numbers	from	the	summary	for	clarity.”	This	is	
essentially	 an	 automated	 peer	 review.	 The	 Smart	 Assistant	 receives	 this	 feedback	
before	the	manager	approved,	so	it	quickly	modifies	the	email	content	to	remove	the	
ticket	detail.	 It	 then	updates	 the	draft	 that	went	 to	 the	manager	 for	approval.	The	
manager	might	not	 even	need	 to	know	 this	happened	–	 they	 simply	 see	a	 slightly	
cleaned-up	email,	and	the	agent	has	improved	the	quality	of	the	output	thanks	to	the	
safety	agent’s	input.	This	showcases	how	third-party	agents	can	provide	oversight	
and	 corrections	 via	 A2X	without	 halting	 the	 entire	 process.	 The	 feedback	 loop	 is	
transparent	and	structured,	which	is	far	better	than,	say,	an	unsecured	hack	that	tries	
to	filter	text.	If	the	Policy	Agent	had	flagged	something	truly	critical	(like	a	privacy	
violation),	 it	 could	 even	mark	 it	 as	 a	blocking	Feedback	 that	 requires	 resolution	
before	proceeding.	

9. Completion	and	Session	Continuation:	All	tasks	are	now	complete	–	rooms	are	set	
up,	issues	resolved,	summary	email	sent.	The	Smart	Assistant	sends	a	final	Message	
to	the	manager:	“All	meeting	rooms	are	ready.	I’ve	emailed	the	team	a	summary	of	
the	status.”	This	was	not	explicitly	asked	for,	but	because	the	session	is	persistent,	the	
agent	can	proactively	inform	the	user	of	the	outcome	(an	example	of	 improved	UX	
through	persistence).	The	manager	 is	pleased	and	simply	closes	the	dashboard	for	
now.	The	A2X	session	with	the	Smart	Assistant	remains	open	in	a	hibernating	state	–	
the	agent	retains	the	recent	context	(stored	perhaps	in	the	manager’s	context	artifact	
or	its	own	memory)	so	that	if	the	manager	returns	later,	the	conversation	can	pick	up	
where	 it	 left	 off.	 Later	 in	 the	day,	 the	manager	might	 reconnect	 and	ask,	 “Did	any	
issues	come	up	in	the	meeting	rooms	this	morning?”	–	and	the	assistant	can	recall	the	
context	to	summarize,	rather	than	treating	it	as	a	brand	new	query.	Furthermore,	the	
knowledge	gained	(e.g.	that	Room	B	had	a	network	hiccup)	could	be	logged	by	the	
assistant	into	a	shared	“IT	knowledge	base”	via	an	Action	to	a	documentation	agent,	
so	that	this	information	is	available	to	others	or	for	future	troubleshooting.	

This	scenario	demonstrates	how	A2X	seamlessly	blends	agent-tool	interactions,	multi-agent	
collaboration,	and	human	oversight	 in	one	unified	 flow.	The	Smart	Assistant	was	able	 to:	
engage	in	continuous	dialogue	with	a	human;	call	tool	services	(email,	climate,	network)	via	
Actions;	 spawn	 a	 multi-agent	 coordination	 (bringing	 in	 IT	 agent)	 using	 shared	 context;	
handle	a	human	approval	loop	for	safety;	and	incorporate	feedback	from	a	policy	agent	–	all	
through	the	same	A2X	communication	fabric.	The	various	message	types	(Message,	Action,	
Observation,	Feedback)	were	used	to	fulfill	different	needs,	but	they	worked	together	within	
the	same	session	and	context,	illustrating	the	power	of	A2X’s	simple,	consistent	design.	

	

A2X Whitepaper DataVesper LLC

Use	Cases	Unlocked	by	A2X	

By	 providing	 a	 universal	 and	 extensible	 communication	 layer,	 A2X	 enables	 a	 range	 of	
advanced	AI	applications	that	were	difficult	to	implement	with	earlier	protocols.	Below	are	
several	high-impact	use	cases	facilitated	by	A2X:	

• Always-On	 Personal	 AI	 Assistants:	 With	 A2X’s	 persistent	 session	 and	 memory	
features,	one	can	build	personal	AI	assistants	that	truly	accompany	a	user	over	long	
periods	and	across	different	platforms.	For	example,	imagine	an	AI	coding	assistant	
that	not	only	helps	in	one	IDE	session,	but	remembers	your	coding	style	and	project	
history	for	months,	or	a	health	coach	bot	that	tracks	your	wellness	data	over	time	and	
interfaces	with	your	smart	home	devices.	A2X	allows	such	an	assistant	to	maintain	a	
long-term	context	for	each	user	(via	context	artifacts)	and	to	proactively	reach	out	
through	continuous	channels	(e.g.	sending	a	reminder	or	alert	without	a	prompt).	It	
also	can	seamlessly	integrate	new	tools	or	IoT	devices	the	user	adds:	as	soon	as	those	
advertise	themselves	via	A2X,	the	assistant	can	start	using	them.	This	is	a	leap	from	
today’s	isolated	chatbot	instances.	It	unlocks	agents	that	behave	more	like	persistent	
digital	companions,	adapting	and	learning	over	time	while	keeping	the	user	firmly	
in	control	through	A2X’s	oversight	capabilities.	

• Collaborative	 Multi-Agent	 Teams:	 Complex	 projects	 (research,	 software	
development,	business	processes)	can	be	handled	by	a	team	of	specialized	agents	
working	 in	 concert,	 often	 alongside	 human	 team	 members.	 A2X	 provides	 the	
coordination	 layer	 for	 such	multi-agent	 ecosystems.	 For	 example,	 an	 “AI	 product	
design	team”	might	consist	of	a	market	research	agent,	a	design	generation	agent,	a	
budget	analysis	agent,	and	a	project	manager	agent.	Using	A2X,	these	agents	can	share	
a	common	context	 for	 the	project,	exchange	 findings	 in	real	 time,	and	divide	tasks	
among	 themselves	 –	 all	 while	 a	 human	 product	 lead	 oversees	 the	 discussion	 via	
agent-to-human	messages.	Agents	can	debate	ideas,	verify	each	other’s	results,	and	
automatically	merge	their	contributions	into	a	final	output.	Without	A2X,	one	would	
have	to	manually	integrate	multiple	protocol	channels	or	build	a	custom	orchestrator	
to	get	this	level	of	synergy.	With	A2X,	the	agents	themselves	have	the	tools	to	organize	
organically	 into	 a	workflow,	which	 is	 a	 powerful	 enabler	 for	 autonomous	 project	
teams	and	decentralized	AI	services.	

• Interactive	Robotics	and	IoT	Automation:	A2X	can	serve	as	the	“nervous	system”	
for	 AI	 agents	 embedded	 in	 physical	 environments,	 such	 as	 smart	 factories,	 smart	
homes,	or	autonomous	vehicles.	Using	the	environment	integration	features,	agents	
controlling	different	devices	can	communicate	events	and	commands	in	real	time.	For	
instance,	 on	 a	 factory	 floor,	 you	 could	 have	 a	 safety-monitor	 agent,	 a	 throughput-
optimizer	agent,	and	a	maintenance	agent	all	connected	via	A2X.	If	a	sensor	(through	
an	Observation)	indicates	an	overheating	machine,	the	safety	agent	can	broadcast	an	

A2X Whitepaper DataVesper LLC

alert,	 the	 maintenance	 agent	 can	 Action	 the	 machine	 to	 shut	 down,	 and	 the	
throughput	agent	can	reroute	tasks	to	other	machines	–	coordinating	all	this	through	
shared	 context	 and	 without	 human	 intervention,	 unless	 a	 human	 supervisor	
Feedback	is	required	for	a	critical	decision.	The	persistent	channels	mean	low	latency	
and	 continuous	 awareness,	 crucial	 for	 robotics.	 And	 importantly,	 A2X’s	 security	
model	 ensures	 that	 only	 authorized	 agents	 can	 send	 control	 Actions	 to	 physical	
devices	 (preventing	 rogue	 commands),	 and	 human	 approval	 can	 be	 required	 for	
anything	dangerous.	Essentially,	A2X	can	unify	what	 is	 today	often	a	patchwork	of	
industrial	protocols,	IoT	hubs,	and	isolated	AI	modules	into	a	cohesive,	secure	agent	
network	managing	an	environment.	

• Knowledge	Networks	and	Continuous	Learning:	 In	knowledge-driven	fields	like	
customer	 support,	medicine,	 or	 law,	 it’s	 beneficial	 to	have	AI	 agents	 that	not	 only	
answer	 queries	 but	 also	 collectively	 build	 and	 refine	 a	 knowledge	 base.	 A2X	
enables	a	scenario	where	multiple	agents	handling	different	tasks	contribute	back	to	
a	common	repository	of	knowledge	via	context	artifacts	or	coordinated	updates.	For	
example,	consider	a	customer	support	center	with	many	AI	helper	agents.	As	 they	
solve	new	issues,	one	agent	(or	a	“learning”	agent)	can	formalize	those	Q&A	pairs	into	
a	shared	FAQ	or	documentation	by	sending	an	update	to	a	documentation	service.	If	
another	agent	encounters	a	similar	issue	later,	it	can	query	the	updated	knowledge	
base	through	A2X	and	find	the	solution.	A2X’s	pub/sub	style	Observations	also	allow	
an	agent	encountering	a	novel	problem	to	broadcast	a	request	for	help	to	peers	–	
perhaps	a	specialist	agent	picks	it	up	and	then	everyone	learns	from	the	resolution.	
Over	time,	this	creates	a	self-improving	swarm	of	agents:	each	interaction	not	only	
serves	the	immediate	user	but	makes	the	whole	system	smarter	(subject	to	validation	
via	Feedback	to	avoid	circulating	errors).	Human	experts	can	be	looped	in	via	A2X	
when	an	agent	is	unsure,	ensuring	quality.	This	use	case	shows	A2X	supporting	a	form	
of	 collective	 intelligence	 among	 AI	 agents,	 with	 the	 protocol	 handling	 the	
information	sharing	and	permissioning.	

• Composable	 Cloud	 AI	 Services:	 As	 organizations	 adopt	 AI,	 there	 will	 be	 many	
independent	AI	services	(from	different	vendors	or	internal	teams)	that	need	to	work	
together.	 A2X	 can	 act	 as	 the	 lingua	 franca	 to	 connect	 these	 into	 composable	
workflows	on	the	cloud.	For	instance,	an	e-commerce	company	might	use	a	third-
party	AI	 service	 for	 customer	 support,	 another	 for	 inventory	optimization,	 and	 its	
own	AI	for	sales	analytics.	With	A2X,	these	services	–	if	compliant	–	could	dynamically	
collaborate	 on	 a	 business	 process:	 a	 customer	 question	 about	 a	 product	 delivery	
could	 trigger	 the	 support	 agent	 to	 consult	 the	 inventory	 agent	 and	 logistics	 agent	
seamlessly,	even	though	they	come	from	different	providers.	Each	agent	advertises	
capabilities	(track	shipment,	provide	status,	etc.),	and	they	call	each	other’s	Actions	
through	 A2X	 securely.	 The	 company’s	 human	managers	 could	 broadcast	 a	 policy	
update	or	emergency	directive	to	all	agents	via	one	A2X	message	if	needed	(e.g.	“stop	

A2X Whitepaper DataVesper LLC

all	 automated	promotions	 today”)	 instead	of	 dealing	with	 each	 system	separately.	
Essentially,	A2X	can	enable	an	“Internet	of	Agents”	–	a	world	where	AI	services	from	
anywhere	can	interoperate	safely	as	long	as	they	speak	the	protocol.	This	is	analogous	
to	how	HTTP	allowed	web	servers	from	any	vendor	to	form	the	World	Wide	Web.	A2X	
could	do	the	same	for	the	AI	agent	ecosystem,	accelerating	integration	and	innovation	
by	removing	proprietary	barriers.	

Conclusion	

The	Agent-To-Everything	(A2X)	Protocol	represents	a	decisive	step	toward	unifying	the	
fragmented	 landscape	 of	 AI	 agent	 communication.	 By	 learning	 from	 the	 successes	 and	
shortcomings	of	MCP,	A2A,	and	other	emerging	standards,	A2X	provides	a	single	framework	
that	covers	the	full	spectrum	of	agent	interactions	–	tool	use,	inter-agent	dialogue,	human	
collaboration,	 and	 environment	 awareness.	 It	 does	 so	 with	 a	 minimal	 set	 of	 versatile	
primitives	 and	 a	 modern	 cloud-friendly	 architecture,	 ensuring	 that	 the	 solution	 is	 both	
elegant	 and	 practical.	 With	 A2X,	 developers	 and	 researchers	 no	 longer	 need	 to	 stitch	
together	multiple	protocols	or	reinvent	communication	layers	for	each	new	project;	they	can	
rely	 on	 a	 comprehensive	 standard	 that	 allows	 agents	 to	 seamlessly	 talk	 to	 anything	
relevant	in	their	world.	

DataVesper	will	 continue	working	 on	 A2X	 as	 an	 open	 specification	 along	with	 reference	
implementations	and	SDKs,	inviting	the	community	to	adopt	and	contribute	to	the	protocol’s	
evolution.	Our	hope	is	that	A2X	will	catalyze	a	vibrant,	interoperable	agent	ecosystem	–	much	
like	HTTP	did	for	web	services	–	where	AI	agents	can	easily	cooperate	across	organizational	
and	 technological	 boundaries.	 By	 standardizing	 persistent	 sessions,	 shared	 context,	
discovery,	 and	 safety	mechanisms,	 A2X	 enables	 the	 next	 generation	 of	 AI	 systems	 to	 be	
continuous	 learners,	 trustworthy	collaborators,	and	deeply	 integrated	 into	both	our	
digital	and	physical	environments.	In	summary,	“Agent-to-Everything”	signifies	that	an	AI	
agent	should	not	be	a	siloed	point	solution,	but	rather	a	connected	intelligent	entity	that	can	
engage	 with	 whatever	 it	 needs	 –	 be	 it	 another	 AI,	 a	 tool	 API,	 a	 human	 mentor,	 or	 the	
surrounding	world	–	through	one	unified	language.	

References	(Endnotes)	

1. Anthropic	 (2024).	 Introducing	 the	 Model	 Context	 Protocol	 (MCP).	 Anthropic	
Announcement,	 Nov	 25,	 2024.	 (Open	 standard	 for	 connecting	 AI	 assistants	 to	 data	
sources	and	tools.)	

2. Stytch	Engineering	(2025).	“Model	Context	Protocol:	Introduction.”	Stytch	tech	blog,	
Jan	2025.	(Overview	of	MCP	as	a	“USB-C	for	AI”	integration	protocol.)	

A2X Whitepaper DataVesper LLC

3. Surapaneni,	R.	et	al.	(2025).	“Announcing	the	Agent2Agent	(A2A)	Protocol.”	Google	
Developers	 Blog,	 Apr	 9,	 2025.	 (Launch	 announcement	 of	 A2A	 for	 open	 agent	
interoperability.)	

4. Broshar,	A.	(2025).	“A2A	and	MCP:	Start	of	the	AI	Agent	Protocol	Wars?”	Koyeb	Blog,	
Apr	11,	2025.	(Comparison	of	A2A	vs	MCP,	discusses	complementary	roles	and	potential	
fragmentation.)	

5. GetStream.io	(2025).	“LLM	Context	Protocols:	A2A	vs	MCP.”	GetStream	blog,	2025.	
(Analysis	 of	 differences	 between	 Google’s	 A2A	 and	 Anthropic’s	 MCP,	 and	 how	 they	
complement	each	other.)	

6. GeekyAnts	 (2025).	 “The	Missing	 Link	 in	 Autonomous	 AI:	 Agent-to-Human	 (A2H).”	
GeekyAnts	Engineering,	2025.	(Discussion	of	the	need	for	standard	human	oversight	
channels	in	autonomous	agent	systems.)	

7. Gupta,	A.	(2025).	“Where	MCP	Falls	Short	–	Drawbacks	of	Model	Context	Protocol.”	
Medium,	2025.	(Review	of	limitations	in	Anthropic’s	MCP,	such	as	context	length	issues	
and	lack	of	memory.)	

8. Gupta,	D.	 (2025).	“MCP	vs	A2A:	A	Comparative	Analysis.”	Personal	blog,	2025.	(In-
depth	 comparison	 of	 Anthropic’s	 and	 Google’s	 protocols,	 noting	 gaps	 and	 potential	
integration	points.)	

9. BytePlus	(2025).	“A2A	Protocol:	Stateless	vs	Stateful	Communication.”	BytePlus	Tech,	
2025.	(Explains	how	A2A’s	stateless	design	contrasts	with	MCP’s	stateful	sessions,	and	
implications	for	scalability.)	

10. Lisowski,	E.	(2025).	“What	Every	AI	Engineer	Should	Know	About	A2A,	MCP	&	ACP.”	
Medium,	Apr	2025.	(Insights	into	the	convergence	of	agent	communication	protocols	
and	the	vision	of	unified	standards.)	

11. Auth0	 (2025).	 “Secure	Human-in-the-Loop	 Interactions	 for	AI	Agents.”	Auth0	Blog,	
2025.	(On	frameworks	for	requiring	human	approval	in	autonomous	agent	actions	to	
ensure	safety	and	compliance.)	

12. IBM	Research	(2025).	“What	is	Agent	Communication	Protocol	(ACP)?”	IBM	AI	Blog,	
June	2025.	(Overview	of	IBM’s	ACP	standard	for	agent-to-agent	communication	on	edge	
and	hybrid	cloud,	as	part	of	the	BeeAI	project.)	

13. AWS	 Machine	 Learning	 Blog	 (2024).	 “Design	 multi-agent	 orchestration	 with	
reasoning	using	Amazon	Bedrock	and	open-source	frameworks.”	AWS	ML	Blog,	Dec	19,	
2024.	 (Demonstration	 of	 multi-agent	 collaboration	 improving	 reasoning,	 and	
introduction	of	AWS’s	Bedrock	Agents	for	multi-agent	orchestration.)	

	

